If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+7x-302=0
a = 1; b = 7; c = -302;
Δ = b2-4ac
Δ = 72-4·1·(-302)
Δ = 1257
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{1257}}{2*1}=\frac{-7-\sqrt{1257}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{1257}}{2*1}=\frac{-7+\sqrt{1257}}{2} $
| X*X=120+2x | | x-(3-3x)=-7 | | -2x+16=-4x+22 | | 2/x+3/x=4/5,x≠0 | | 6a+2=4a−3 | | 5x+10=-x-14 | | -0.08t^2+1.6t+2=9 | | 2n=$150.62 | | 2x–25=85 | | m/2*(m+1)=m/2*(m+1) | | 5c+11=475 | | 5x-49=14 | | -(5-3y)-y=-3 | | 2n=150.62 | | 15x-2=10x+4 | | 2x+8°=180 | | 16^x=1/4 | | 15x-2=10x+6 | | 3y=12-6 | | 5(3x4+1)=80 | | 3(2x+12)=2(2x-10)) | | -7x+x=-6 | | 8x+10=x+6 | | 16x+4=7x+5 | | 0.2x+0.1=0.5 | | -x+12-x=0 | | N2-n=210 | | 6b-9=2 | | 9x+7+3x=12x+7 | | -(-6x+9)-3/4x=-x-5/2(-4x+4) | | n−9.02=3.86n= | | 36x–20.6=14x+89.4 |